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abstract. — In this article, we analyze mathematical models of digital loops used to track the 
phase and timing of communications and navigation signals. The limits on the accuracy of 
phase and timing estimates play a critical role in the accuracy achievable in telemetry rang-
ing applications. We describe in detail a practical algorithm to compute the loop parameters 
for discrete update (DU) and continuous update (CU) loop formulations, and we show 
that a simple power-series approximation to the DU model is valid over a large range of 
time-bandwidth product ( )B TL . Several numerical examples compare the estimation error 
variance of the DU and CU models to each other and to Cramér-Rao lower bounds. Finally, 
the results are applied to the problem of ranging, by evaluating the performance of a phase-
locked loop designed to track a typical ambiguity-resolving pseudonoise (PN) code received 
and demodulated at the spacecraft on the uplink part of the two-way ranging link, and a 
data transition tracking loop (DTTL) on the downlink part. 

I. Introduction 

The goal of ranging is to accurately determine the distance between a spacecraft and a 
ground antenna as a function of time [1]. This is accomplished by measuring the time for 
an electromagnetic signal to travel between the spacecraft and the ground. By properly ac-
counting for ground and spacecraft processing delays — carefully calibrated ahead of time 
— the round-trip light time can be determined. In the two-way ranging approach currently 
used by the Deep Space Network (DSN), a signal modulates the phase of an uplink carrier 
signal, which is then demodulated on the spacecraft and used to modulate the phase of a 
downlink carrier. 

The basic timing relationship between the uplink and downlink signals used in the DSN 
for conventional two-way ranging is illustrated in Figure 1(a). The uplink signal is received 
at the spacecraft after a delay of ux seconds following transmission, turned around, and re-
transmitted towards the ground, where it is received after a further delay of dx seconds. In 
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the timing shown, the spacecraft has regenerated a clean copy of the acquired uplink rang-
ing signal. The round-trip light time udx  can be determined by correlating the uplink trans-
mission and received downlink ranging waveforms as seen on the ground. The round trip 
delay equals the sum of the one-way uplink and downlink light-times, i.e., ud u dx x x= + , 
from which the range can be computed by multiplying by one-half the speed of light.

A new telemetry ranging method was presented in [2] — see Figure 1(b). As in the conven-
tional two-way regenerative ranging, an uplink signal experiences a delay of ux  seconds trav-
eling from Earth to the spacecraft, and a downlink signal experiences a delay of dx  seconds 
traveling from the spacecraft to Earth. The two-way delay is ud u dx x x= +  seconds, as before. 
The difference with telemetry ranging is that the downlink signal is not a copy of the rang-
ing signal. Instead, it is the regular science telemetry that the spacecraft wishes to send to 
the ground.

The two-way delay udx  is determined as follows. Since the uplink signal is a periodic wave-
form, we may define an associated “phase” that transitions from 0 through 2p over the 
entire signal, and repeats. Onboard the spacecraft, the uplink signal is acquired and tracked, 
and thus its phase is known at any instant of time. In particular, the phase is known at 
the instant that a telemetry codeword begins to be transmitted. The spacecraft latches this 
phase value, and inserts it into the telemetry stream to be transmitted in a subsequent code-
word. On the ground, the arrival time of the codeword is determined from tracking loops, 
and the measured spacecraft phase at that ground-arrival time is compared with the uplink 
transmitted ranging signal to compute the two-way delay udx .

Figure 1. Timing of (a) conventional two-way regenerative ranging, and (b) telemetry ranging.
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As can be seen from the description above, the ranging accuracy is limited by the accuracy 
of timing estimates both on the spacecraft and the ground. These estimates are made with 
digital tracking loops. In order to achieve the range accuracy of less than 1 m, each of these 
must be accurate to within 1 or 2 nanoseconds. This article explores the limits of range esti-
mation accuracy by analyzing the theoretical limits of the digital tracking loops used.

With any modulation format, pseudonoise (PN) sequence, or telemetry data, it is first neces-
sary to phase-lock to the carrier via a standard phase-lock loop for residual carrier signals 
or a Costas loop for suppressed carrier modulation. Following carrier lock, symbol synchro-
nization is established to demodulate the received signals. For PN sequences, correlators 
can be used to acquire the signal to a fraction of a chip-duration, corresponding to tens of 
meters of range resolution for a 1-µs chip (corresponding to 1/2 MHz signal bandwidth), 
but much greater precision is required to achieve the goal of sub-meter resolution: this can 
be accomplished by data-transition tracking loops (DTTLs) on the ground, or for the case 
of ambiguity-resolving PN sequences that resemble a square wave (or sine wave, if shaped 
pulses are used), specially designed phase-locked loops on the spacecraft that lock to the 
demodulated signal. An example of such a phase-locked loop design is described in [3]. In 
all cases, the required precision can be attained by digital phase-locked loops; therefore, 
we concentrate on the analysis of digital phase-locked loop design applied to telemetry 
ranging.

An excellent systematic approach to digital phase-locked loop design that does not rely on 
conventional analog loop theory has been presented by Stephens and Thomas [4]. Their 
novel formulation enables the design engineer to specify the gain coefficients of the digital 
loop required to achieve a desired normalized loop bandwidth, B TL , where T  is the loop’s 
update interval, which in turn determines the ability of the loop to track the phase of weak 
signals in a noisy environment, as typically encountered in deep-space communications 
and navigation applications.
  
When operating with weak signals in a noisy environment, it is often desirable to opti-
mize the loop bandwidth to minimize the rms phase error. This optimization depends on 
the phase spectrum of the oscillator, especially on spacecraft where the reference oscilla-
tor is often an ultrastable oscillator (USO) with significant phase noise at low frequencies. 
As described in [5], phase-locked loops track out phase instabilities within the closed-loop 
bandwidth, suggesting that the loop bandwidth BL should be made as large as possible 
in order to track out both low- and high-frequency phase noise contributions to the total 
phase error. However, additive noise entering the tracking loop also contributes to the total 
phase error, and this component increases with BL. Therefore, an optimum value of loop 
bandwidth exists that minimizes the total phase error, by excluding noise while tracking the 
oscillator’s phase fluctuations. The goal of digital loop design is to determine the gain coef-
ficients to achieve the desired loop bandwidth, once the performance has been optimized.

The update interval T  is a free design parameter that determines the rate at which the loop 
operates. Small update intervals lead to high update rates that require high-speed process-
ing, leading to increased design complexity and cost; hence, low update rates often lead to 
more efficient design. The “continuous update” or CU model, valid for vanishingly small 
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update intervals as T  approaches zero, yields tractable solutions for the gain coefficients 
in terms of the normalized loop bandwidth B TL , provided that B T 0L " . However, for 
“discrete update” or DU loops, where efficiently designed loops operate with B T 0L & , the 
gain coefficients obtained from the CU model are generally in error, leading to larger loop 
bandwidths than the CU model predicts; hence, suboptimum performance in terms of 
phase error.

Since the tracking-loop models do not depend on the method of extracting the error signal, 
these models are in principle applicable to any tracking loops, provided the error estimates 
and noise characteristics are suitably modified to take into account the preprocessing opera-
tions performed by different loops.  

In this article, a useful mathematical model of DU loops originally described in [4] will be 
revisited and key concepts in the method of solution illustrated with simple examples.  
A general MATLAB computer program developed to compute the gain coefficients in real 
time for the DU model will be described, and a digital carrier tracking loop implemented 
in the simulation will be evaluated and compared to theoretical performance bounds. The 
impact of coefficient errors on residual carrier loop performance will be evaluated over a 
range of signal-to-noise ratios (SNRs) relevant for deep-space communication and naviga-
tion applications.

II. Signal and Noise Models for Telemetry Ranging

Telemetry ranging relies on the modulated ranging signals on the uplink, and telemetry 
or science data transmitted to the ground, to measure range. These signal formats are well 
established and will not be modified in any fundamental way to enable telemetry rang-
ing, but some parameters of the received uplink signal will be measured at the spacecraft. 
Specifically, the nominally 7.2-GHz uplink carrier frequency will be tracked via a residual-
carrier phase-locked loop and translated coherently to the nominally 8.4-GHz downlink 
frequency, the phase of the uplink PN ranging signal will be measured at the moment a 
telemetry codeword begins its transmission, and this measurement will be relayed to the 
ground as part of engineering data. We begin with a description of the uplink ranging sig-
nals and downlink telemetry with the current operational deep-space communications and 
navigation system.

A useful model for the modulated signal ( )s t  used for both uplink and downlink 
signaling is in the form of a microwave carrier phase-modulated with subcarrier 
and binary data modulation. This signal is a real electromagnetic field of the form 
( ) [ ( ) ( )]sin Sqs t A t m t d t2 sc0~ ~i= + + , where 0~  is the carrier frequency, i is an  

unknown phase that must be determined and tracked as it changes, sc~  is the subcarrier  
frequency, m  is the modulation index /m 20 1 1 r , ( )d t 1!=  is the binary data or PN 
code modulation, and Sq is a square-wave function analogous to sine with ( )Sq 0 1=  
(hence, direct modulation corresponds to 0sc~ = ). The spectral components of the modula-
tion are assumed to be far removed from the carrier, so that interference from the modula-
tion can be ignored. 
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It is convenient to expand the sine of the sum into in-phase and quadrature components: 

.sin cos Sq cos sin Sqs t A t m t d t t m t d t2 sc sc0 0~ i ~ ~ i ~= + + +_ a _ _ _ _i i i i i k7 8 7 8A B A B

Recognizing that [ ( ) ( )] [ ]cos Sq cosm t d t msc~ =  and [ ( ) ( )] [ ] ( ) ( )sin Sq sin Sqm t d t m t d tsc sc~ ~=  

[ ( ) ( )] [ ] ( ) ( )sin Sq sin Sqm t d t m t d tsc sc~ ~= , the received signal can be represented as

.cos sin sin cos Sqs t A m t A m t t d t2 2 sc0 0~ i ~ i ~= + + +_ _ _i i i7 7 7 7A A A A

The first term in Equation (2) is the residual carrier with power [ ]cosP P mrc t
2=

and the second term is the data-modulated subcarrier with power [ ]sinP P msc t
2=

where P At
2=  is the total power of the received signal. Power is conserved, since 
( [ ] [ ])cos sinP P P m m Prc sc t t

2 2+ = + =  .

The signal is received in the presence of additive noise, which can be modeled as a continu-
ous time noise process ( ) ( ) ( ) ( ) ( )cos sinn t n t t n t t2 2Q I0 0~ ~= - , where ( )n tQ  and ( )n tI  
are statistically independent zero-mean random Gaussian processes with variance 2v . The 
received signal-plus-noise waveform ( )r t  can therefore be represented as 

( ) .sin Sq cos sinr t A t m t d t n t t n t t2 2 2sc Q I0 0 0~ i ~ ~ ~= + + + -_ _ _ _ _ _i i i i i i8 B

Before signal processing is applied, the received signal is downconverted to complex base-
band, usually in two steps in a practical system: first, the signal is downconverted to an 
intermediate frequency (IF), then further downconverted from IF to complex baseband. The 
signal-processing algorithms are applied at baseband; hence, we can model downconver-
sion as a single-step process without any loss in generality. With this model, the received 
signal is downconverted to complex baseband by multiplying with ( )sin t2 NCO~ i+ t  and 

( )cos t2 NCO~ i+ t  and lowpass filtering, where NCO~  is the radian frequency of the nu-
merically controlled oscillator (NCO) driving the phase-locked loops either at the spacecraft 
or on the ground, and it is the loop’s estimate of the received phase. 

Since the received signal was modeled as a sine waveform, the “in-phase” or I component is 
obtained when the received signal is multiplied by ( )sin t2 NCO~ i+ t , and the “quadrature” 
or Q component obtained when multiplied by ( )cos t2 NCO~ i+ t . Letting NCO 0~ ~= , us-
ing Equation (2), and carrying out the indicated operations, the I component becomes
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where the double-frequency terms and the modulated subcarrier have been removed by 
lowpass filtering. Similarly, the Q component can be expressed as
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where i i iD = - t  is assumed to be small for a phase-locked loop, hence ignored in the 
noise components. The lowpass filter LPF eliminates the double-frequency terms, as well as 
the modulated subcarrier.

The downconverted I and Q components, which so far have been modeled as analog 
signals, are averaged via short-term integration and converted to digital samples. For our 
interest, the relevant quantities are the amplitude of the I and Q components and the SNR 
expressed in terms of /P Nt 0. For sampling intervals T shorter than the modulation, the 
signal samples can be expressed as 

 cos cos cos cosI T
A
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i iD D= =
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Since ( )sin ,i iD D  for 1<<iD , the quadrature channel samples provide an error signal 
for the carrier tracking loops.

The variance of the noise components can be related to the two-sided noise spectral level 

/N 20  by modeling the correlation function as
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valid for both the in-phase and quadrature noise components. The sample signal-to-noise 
ratio can now be expressed as the ratio of the total signal power to noise variance. When 
the phase error is close to zero, ( )sin 0, ,i iD D , all of the residual carrier power is in the  
I component, yielding the following sample SNR for the I component:

( ) ( )
.

cos cos
cos

A m
N

T A m
T N

P
m

2
2 s

ts
2

2 2

0

2 2

0

2

v
= = e _o i



7

Solving for /P Nt 0 yields  N
P

T

A

2

t

s0 2

2

=
v

, hence the noise variance can now be expressed as a 
function of /P Nt 0 , in the following manner: / ( / )A T P N2 s t

2 2
0v = . These results will be used 

to adjust the variance of the additive noise in the simulation and discussed further in the 
numerical results section, where simulated loop performance will be evaluated.

III. Mathematical Model of Digital Tracking Loops

The simulation program designed to implement the telemetry ranging concept is based 
on current operational systems that rely heavily on digital tracking loops both on the 
spacecraft and on the ground, including carrier tracking loops, Costas loops, and DTTLs. 
Although differing on the method of obtaining the error signal needed for closing the loop 
and in some cases requiring different effective noise models due to squaring or other pre-
processing operations, the closed-loop performance of the various tracking loops ultimately 
depends only on the gain coefficients, the effective noise environment, and the resulting 
loop bandwidth. Therefore, the gain coefficients are critical for establishing the desired 
transient characteristics and performance levels for both the CU and DU models, but the 
exact method of obtaining the required phase estimates does not impact loop design. 
Therefore, we can characterize loop behavior and establish performance criteria even with 
a simple loop structure, such as the residual carrier tracking loop: the same mathematical 
techniques can be applied to the other tracking loops as well, with similar conclusions re-
garding the impact of the CU and DU models for the gain coefficients on loop performance.

A. Digital Update Loop Model

The behavior of an N-th order digital loop with computational delay of nc updates, 
, ..., ,n 0 1 2c =  can be described in terms of the following update equation in [4]:
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where the loop gain coefficients are K i1i 6# , and n n n/{ { {-u t  is the n-th residual phase 
term, defined in terms of the true phase n{  and its estimate n{t . The update interval is T 
seconds, and the estimated rate of change of phase for update interval (n+1) on the left-
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Separating the phase terms on the left-hand side and writing their estimates on the right-
hand side yields the update equation for loops with phase and phase-rate feedback as

 (3)
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Analogous to the Heaviside differential operator x2
2 , define the difference operator D as 

x x xn n n 1D = - - . Apply the difference operator to Equation (3) N–1 times as in [4], and note 
that each sum collapses to a single term via the following argument:       
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This observation finally yields:
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The difference Equation (5) specifies the phase response of the digital loop to the input 
signal phase, and can be solved for the loop’s phase estimate in terms of the input phase by 
the method of z-transforms.

B. z-Transform Solution to the Difference Equation

The difference Equation (5) specifies the response of a second-order loop to the input phase, 
when the phase error is suitably small. Difference equations of this type are usually solved 
using the concept of the z-transform. Consider the single-sided z-transform of the sequence 
{ }xn , ( )Z xn , defined as 
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where ( )H z  is the transfer function relating the phase estimate of the loop to the input 
phase and ( )z1 1- -  was replaced by ( )/z z1- . 

It is convenient to write the denominator of the transfer function as
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The above derivation is predicated on the assumption that both phase and phase-rate 
feedback were applied, so we could write the update equation as Tn n n1 1{ { {+=+ +

t t ot  
If only phase rate feedback is applied, then the update equation becomes 

( )T Tn n n n1 2
1

1{ { { {+ +=+ +
t t ot ot , as described in [4]. For this case, the form of the transfer 
function remains the same, but the denominator becomes 

.D z z z z K z K z z z K1 1 1 12
1n N N N N

N1
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2
2 1c g= - + + - + - + +

- - -_ _ _ _ _i i i i i8 B
   
The quantity of greatest interest to the design engineer is the single-sided loop noise band-
width BL, or equivalently the normalized loop bandwidth B TL , which helps determine the 
performance of the loop in noisy environments. The normalized loop bandwidth depends 
on the closed-loop transfer function, which in turn depends on the loop gains. The nor-
malized loop bandwidth can be determined as a contour integral over the unit circle, 

( ) ( )B T H z H z z dz2 L i2
1 1 1= r

- -#o , where we made use of the fact that z 1-  is the conjugate of 

z. This contour integral can be computed with the help of the residue theorem, according 
to which the value of the contour integral is the sum over the set of all poles { ; }z mi i  of the 
integrand within the unit circle, where , ,m 1 2i f=  is the multiplicity of the i-th pole. The 
general form of the residue theorem for poles with multiplicity mi , applied to the problem 
of determining the normalized loop bandwidth, can be expressed as 
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where only roots inside the unit circle contribute to the sum. To evaluate this solution 
and determine the closed-loop bandwidth, it is necessary to first determine the roots of 
the transfer function and their multiplicity, namely the set { ; }z mi i . The transfer function 
of an Nth-order loop has N roots, some possibly with multiplicity greater than one. The 
roots can be determined directly by rewriting the denominator in root-factorized form as 

i 1=
( ) ( )D z z zi= -) N

% . Expanding the product and equating the coefficients of like powers in 
Equation (8) yields N equations that can be solved for the roots of the transfer function in 
terms of the gain coefficients, i{ }K . These N equations are of the form [4]
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Once the roots have been determined in terms of the loop gains i{ }K , the loop bandwidth 
can be evaluated for the DU model in functional form. These results have been tabulated in 
[4] for the case of zero computational delay for loops of up to fourth order, part of which is 
reproduced in Table 1 for a “standard underdamped” loop design, as reference.

The following examples illustrate some of the above concepts, without introducing any un-
necessary computational complexity. 

(9)

(10)

.
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Example 1. The gain coefficients of a second-order loop with no computational de-
lay are computed for the DU model first directly from Equation (8) by equating coef-
ficients of like powers, then by simple substitution into the general solution of Equa-
tion (10). Letting n 0c =  and N = 2, substituting into Equation (8) and expanding 
yields ( ) ( ) ( ) ( ) ( )D z z z K zK z K K z K1 1 2 1N 2

2
1 2 1 2 1

2= - + - + = + + - + -= . Writing the 
denominator in factorized form yields ( ) ( )( ) ( )D z z z z z z z z z zzN 2 1 2

2
1 2 1 2= - - = - + +=  

Equating like coefficients and solving yields two equations in two unknowns, namely 
z z K K21 2 1 2+ = - -  and K z z11 1 2= - , yielding ( )K z z z z12 1 2 1 2= + - + . Substituting 
into the general solution directly yields zz K K21 2 1 2+ = - -  and zz K11 2 1= - , which 
are seen to be the same as with the direct approach, verifying the validity of the general 
approach. 

Example 2. For the sake of simplicity, consider a simple first-order loop with transfer func-
tion ( ) /( ( )) /( )H z K z K K z z11 1 1 1= - - = - , where the second equality is the root-factorized 
form of a first-order loop. The single root is identified by inspection as z K11 1= - , clearly 
inside the unit circle since K0 111 1 . The complex conjugate of the transfer function is 

( ) /( ( )) /( )H z K z K K z z11
1

1
1 1

1
1= - = --- - - . The squared magnitude of the transfer func-

tion with i 1=  and m 1i = , ( ) ( ) /( )( )H z H z K z z z z1 1
1

1
1

11
2= - -- -  yields

( ) ( ) ( )B T z z H z H z z2
( ) ( )L z z

z z

K z
z z z z

K
z z

K

K

K

K

1
1 1

1 1 1 21 1
1

1
2 1

1 1

1
2

1
1
2

1
2

1

1= - = = = =" " "
- -

- - - - --

-

with the final result /( )B T K K2L 2
1
1 1= - .

The solutions presented so far determine the loop gain coefficients i{ }K  for the DU model, 
in principle for a loop of arbitrary type and degree. The loop bandwidth can be determined 
from these coefficients, as the above examples illustrate. However, when designing a track-
ing loop for deep-space applications, it is often more important to determine the gain 
coefficients for a given loop bandwidth, which may have been determined from loop band-
width optimization or other external considerations. This is in effect the inverse problem, 
where the designer is given a loop bandwidth and asked to determine the gain coefficients 
for a tracking loop of a given order. The solution to this problem is not straightforward, and 
only approximate power series or iterative numerical solutions are known at this time. 

.

Table 1. Normalized loop bandwidths in term of the K parameters. 

(From [4], Table IV)

	 lst order 

		  ( )
B T

K

K

2 2L
1

1
=

-

	 2nd order 

		   

	 3rd order 

		  ( ) ( )
B T

K K K K K K K K

K K K K K K K K K K K K K K K K K

2 8 4 2

4 4 4 2 4 4 3

L
1 3 1 3 1 2 3

2 3 1 3 3 11
2

2
2

2
2

1
2

3
2

3
2

2

2 31 2 1+ +
=

- + - - -

- + + + + +

( )
B T

K K K

K K K K

2 4 2

2 2

L
1 1 2

2 1 21
2

=
- -

+ +
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For comparison, the results of the CU model presented in [4] are summarized in Table 2, 
which gives the gain parameters in terms of loop bandwidth. This is the desired form of 
the results, since the loop bandwidth is likely obtained from other considerations, hence 
the design engineer needs to determine the gain coefficients that realize the desired loop 
bandwidth.
                    

Table 2. Loop gain parameters as functions of the normalized loop bandwidth,  

in the CU model for loops up to order 4. (From [4], Table III)

	 Supercritically damped:                       , for all roots

	 1st order	 B T4 L 	 —	 —	 —

	 2nd order	 B TL5
16

	 K4
1
1
2

	 —	 —

	 3rd order	 B TL
32
11 	 K3

1
1
2

	 K1
3

27
1

	 —

	 4th order	 B TL93
256

	 K8
3
1
2

	 K16 1
31

	 K1
4

256
1

	 Standard underdamped:                         , for all roots

	 1st order	 B T4 L 	 —	 —	 —		

	 2nd order	 B TL3
8

	 K2
1
1
2

	 —	 —		

	 3rd order	 B TL23
60

	 K9
4
1
2

	 K27
2
1
3

	 —		

	 4th order	 B TL27
64

	 K2
1
1
2

	 K8
1
1
3

	 K64
1
1
4

		

K1

Loop Constants

K2 K3 K4

,0 1ii
2
h m= =

,1 1ii
2
h m=- =

C. Power Series Expansion in Terms of Loop Bandwidth

Power series solutions for the loop gain coefficients in terms of the normalized closed-loop 
bandwidth B TL  were presented in [5] for loop orders up to four, for either supercritically 
damped or standard underdamped loop types, with both phase and phase-rate or phase-
rate-only feedback and computational delay of up to one update interval, but no derivation 
was provided. For example, the gain coefficients for a supercritically damped second-order 
loop with zero computational delay are given by the following expressions in [5]: 

( ) ( ) , / ( ) .K B T B T B T K K B T B TL L L L L1 5
16

125
896 2

3125
46592 3

2 1
2

4
1

5
2

125
12 2

, ,- + + -

With a single update delay, the expressions are 

( ) ( ) , / ( ) .K B T B T B T K K B T B TL L L L L1 5
16

125
2368 2

3125
421888 3

2 1
2

4
1

5
4

125
112 2

, ,- + + -

The validity of these approximate formulas will be investigated in the section on numerical 
results.
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D. Iterative Algorithm Converging on Specified Loop Bandwidth

An iterative solution for the loop gain coefficients i{ }K  has been implemented in MATLAB 
for any desired loop bandwidth, loop filter type, and feedback method. The input variables 
for this algorithm are the normalized closed-loop bandwidth B TL , the filter order N, the 
computational delay nc, the filter type (supercritically damped or standard underdamped), 
and the feedback type (either phase and phase-rate, or phase-rate only). The outputs of this 
program are the loop coefficients i{ }K .

In the loop-filter design tool, we define an N +1 dimensional symbolic vector in terms of 
the computational delay and N as

( ) , ( ) , ( ) , ,z z z z z zZ 1 1 1n N N N N1 2 1c g= - - -- - -8 B
for phase and phase-rate type feedback, and similarly as

( ) , ( )( ) , , ( )z z z z z zZ 1 1 1 1
n N N N

2
1 1

2
1 1c g= - + - +- -8 B

for the phase-rate-only type feedback. Defining N+1 dimensional vector of gain coeffi-
cients as ( , , , )K KZ 1 N1 g= , the denominator of the transfer function can be computed as 
( ) :D z UZ K:= = , where U is another name for ( )D z  for convenience, but otherwise iden-

tical to it. Next, the normalized decay parameter B T1  is initialized, and the roots of ( )D z  
calculated as in [4, Equation (50)], and a symbolic parameter generated. We then equate the 
N equations obtained from taking up to the N–th derivative of U with that obtained from 
the corresponding derivatives of the polynomial of the roots, i.e., ( )D z . The N equations in 
Ki  obtained by letting z = 0 in each derivative can be solved using the MATLAB solve com-
mand. In case of nonzero computational delay, n 0>c , N nc+  linear equations are solved 
instead of N equations, by taking the first N nc+  derivatives of the root polynomial.

In the following step, the normalized closed-loop bandwidth B TL  is computed using the 
residue theorem: the multiplicity of each root is determined and the residue of the root zi  
with multiplicity mi is computed using the equation

!
.Res z

m dz

d
z z H z

1
1

i
i

m

m

i
m

1

1

i

i
i=

-
--

-

_ _ _i i i# -

                                                                                                  
Note that multiplication of ( )H z  with ( )z zi

N-  should be computed as 

z z

D z z z 1

jj i

n Nc

-

- -

!

_
_
_i
i
i

%

for root zi; otherwise, pole cancellation can lead to very small numerical differences be-
tween the roots calculated initially and the roots of ( )D z  in the denominator of ( )H z .

An iterative process was implemented that converges on the K-vector for the desired value 
of B TL . With B T1  set equal to B T1  + step_size, at each iteration the current value of B TL  
is compared to the desired value: when the algorithm approaches the desired value of B TL
step_size is halved and the process continued, until the predetermined tolerance on B TL  

,
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is achieved. Gain coefficients for loop orders of N = 1, 2, and 3 have been compiled using 
this algorithm, for a range of B TL  values, with computational delays of nc = 0,1, shown in 
Table 3.

IV. Numerical Results

A MATLAB program was developed to simulate the performance of the end-to-end telem-
etry ranging system from ground through spacecraft, where the uplink carrier is tracked 
and turned around coherently at the downlink frequency, and the arrival time of the binary 
modulation is measured, then relayed to the ground via engineering telemetry. Critical to 
implementing these functions are the residual carrier (RC) loop in the spacecraft, and Cos-
tas and DTTL loops on the ground. Although sample-level correlation is used to establish 
rough timing for the uplink PN sequences, this is only a preliminary estimate used primar-
ily for initializing the tracking loops, which then provide the refined estimates required for 
range determination. We begin by evaluating the simulated performance of the RC loop 
on the spacecraft, both with conventional CU and the more accurate DU gain coefficients, 
and compare their performance under realistic operating conditions. First we highlight the 
differences in the various solutions to CU and DU loop gains, by comparing the loop gains 
generated by each of the three techniques considered in this article.

Three different estimates of the gain parameter K1  for a second-order supercritically 
damped tracking loop, without computational delay, are shown in Figure 2(a). The CU 
model for the gain parameter K1 is a simple linear function of normalized loop bandwidth, 
namely, K B TL1 5

16= , which approximates the accurate DU model for B TL < 0.5. Based on 
this observation, it appears that the CU model can be used over a larger range of B TL  then 
generally reported, namely ≤ 0.02. The three-term power-series approximation remains 
close to the DU model over an even greater range, namely B TL < 0.2, hence this simple 
formula can be applied over this expanded range to approximate the first loop gain param-
eter. For larger values of B TL , both CU and three-term power-series approximations devi-
ate significantly from the DU model. For example, when B TL = 0.5, both approximations 
overestimate the first gain parameter by more than a factor of two. These errors will also 
overestimate the loop bandwidth by roughly a corresponding amount, hence predict overly 
pessimistic phase-error performance. Somewhat surprisingly, the power series approxima-
tion for K2 remains close to the true DU values over a much greater range, as shown in 
Figure 2(b), even though the CU approximation again diverges rapidly. 

Next, we consider the differences in loop performance when using the CU and DU models 
to calculate the gain parameters for the simplest tracking loop structure in the telemetry 
ranging system model, namely, the residual-carrier tracking loop used on the spacecraft to 
lock onto the uplink carrier. Note that the loop equations apply to any closed-loop tracking 
system, including residual-carrier tracking loops, Costas loops, and DTTLs; therefore, the 
transient behavior, gain parameters, and normalized loop bandwidth are not affected by 
the details of the tracking loop system design. The main difference between the different 
loop structures is the method of obtaining the error signal, which does not impact the loop 
characteristics, but could impact the optimum value of the loop bandwidth. For example, 
Costas loops belong to the class of squaring loops because of the method of obtaining 
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Table 3. Gain coefficients generated by the iterative MATLAB tool  for a broad range of BLT covering  

both CU and DU models, and with computational delays of (a) zero and (b) 1.

B TL K1

(a) No computational delay
	 0.001	 3.99e-3	 3.19e-3	 2.55e-6	 2.90e-3	 2.81e-6	 9.1e-10
	 0.005	 1.98e-2	 1.58e-2	 6.31e-5	 1.44e-2	 6.94e-5	 1.12e-7
	 0.01	 3.92e-2	 3.13e-2	 2.49e-4	 2.85e-2	 2.73e-4	 8.78e-7
	 0.02	 7.69e-2	 6.12e-2	 9.76e-4	 5.57e-2	 1.06e-3	 6.76e-6
	 0.03	 1.11e-1	 8.99e-2	 2.12e-3	 8.17e-2	 2.31e-3	 2.20e-5
	 0.05	 1.82e-1	 1.44e-1	 5.58e-3	 1.30e-1	 6.03e-3	 9.44e-5
	 0.075	 2.61e-1	 2.05e-1	 1.18e-2	 1.86e-1	 1.27e-2	 2.94e-4
	 0.1	 3.33e-1	 2.61e-1	 1.96e-2	 2.37e-1	 2.10e-2	 6.42e-4
	 0.15	 4.62e-1	 3.57e-1	 3.93e-2	 3.24e-1	 4.14e-2	 1.84e-3
	 0.2	 5.71e-1	 4.38e-1	 6.26e-2	 3.98e-1	 6.52e-2	 3.78e-3	
	 0.25	 6.67e-1	 5.06e-1	 8.84e-2	 4.61e-1	 9.09e-2	 6.44e-3
	 0.3	 7.50e-1	 5.64e-1	 1.16e-1	 5.14e-1	 1.18e-1	 9.76e-3
	 0.35	 8.24e-1	 6.14e-1	 1.46e-1	 5.60e-1	 1.44e-1	 1.37e-2
	 0.4	 8.89e-1	 6.58e-1	 1.72e-1	 6.00e-1	 1.71e-1	 1.82e-2
	 0.45	 9.47e-1	 6.95e-1	 2.01e-1	 6.35e-1	 1.98e-1	 2.32e-2
	 0.5	 1	 7.28e-1	 2.29e-1	 6.66e-1	 2.24e-1	 2.86e-2
	 0.6	 —	 7.83e-1	 2.85e-1	 7.17e-1	 2.73e-1	 4.06e-2
	 0.7	 —	 8.26e-1	 3.39e-1	 7.59e-1	 3.20e-1	 5.37e-2
	 0.8	 —	 8.60e-1	 3.92e-1	 7.92e-1	 3.63e-1	 6.77e-2
	 0.9	 —	 8.87e-1	 4.41e-1	 8.20e-1	 4.03e-1	 8.23e-2
	 1	 —	 9.10e-1	 4.89e-1	 8.43e-1	 4.40e-1	 9.73e-2
	 1.2	 —	 9.42e-1	 5.78e-1	 8.78e-1	 5.06e-1	 1.28e-1
	 1.4	 —	 9.65e-1	 6.59e-1	 9.04e-1	 5.64e-1	 1.60e-1
	 1.6	 —	 9.79e-1	 7.33e-1	 9.24e-1	 6.13e-1	 1.91e-1
	 1.8	 —	 9.89e-1	 8.01e-1	 9.39e-1	 6.56e-1	 2.22e-1
	 2 	 — 	 9.95e-1 	 8.63e-1 	 9.50e-1 	 6.93e-1 	 2.52e-1
	 2.5	 —	 1	 1	 9.70e-1	 7.69e-1	 3.26e-1
	 3	 —	 —	 —	 9.81e-1	 8.25e-1	 3.95e-1
	 3.5	 —	 —	 —	 9.88e-1	 8.67e-1	 4.59e-1
	 4	 —	 —	 —	 9.92e-1	 9.00e-1	 5.19e-1
	 4.5	 —	 —	 —	 9.95e-1	 9.25e-1	 5.76e-1
	 5	 —	 —	 —	 9.97e-1	 9.44e-1	 6.29e-1
(b) 1 unit of computational delay
	 0.001	 3.97e-3	 3.18e-2	 2.54e-6	 2.89e-3	 2.80e-6	 9.0e-10
	 0.005	 1.94e-2	 1.55e-2	 6.14e-5	 1.41e-2	 6.75e-5	 1.08e-7
	 0.01	 3.78e-2	 3.02e-2	 2.36e-4	 2.75e-2	 2.59e-4	 8.17e-7
	 0.02	 7.18e-2	 5.73e-2	 8.74e-4	 5.22e-2	 9.55e-4	 5.90e-6
	 0.03	 1.03e-1	 8.19e-2	 1.83e-3	 7.46e-2	 1.99e-3	 1.81e-5
	 0.05	 1.57e-1	 1.24e-1	 4.48e-3	 1.14e-1	 4.82e-3	 7.03e-5
	 0.075	 2.15e-1	 1.68e-1	 8.74e-3	 1.54e-1	 9.28e-3	 1.95e-4
	 0.1	 —	 2.05e-1	 1.37e-2	 1.87e-1	 1.43e-2	 3.90e-4
	 0.15	 —	 2.59e-1	 2.49e-2	 2.38e-1	 2.51e-2	 9.72e-4
	 0.2	 —	 —	 —	 2.74e-1	 3.60e-2	 1.78e-3
	 0.25	 —	 —	 —	 3.00e-1	 4.62e-2	 2.79e-3

K1 K2

N 1= N 2= N 3=

K1 K2 K3
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Figure 2. (a) Comparison of estimates of the loop parameter K1 for a second-order supercritically damped loop, 

with no computational delay; (b) comparison of the K2 parameters for the same conditions.
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the error signal, hence the noise model changes due to the squaring operation, leading to 
“squaring loss” in loops of this type. Linear loops do not suffer from squaring loss, but may 
have other loss mechanisms that affect their performance, such as the “transition-detec-
tion” portion of the DTTL, which leads to additional errors at low SNRs. These differences 
will be examined in the following performance comparisons.

Before examining loop behavior, we need to describe the design of the roots to achieve the 
desired transient response. In the DU model developed in [3], the roots are parameterized 
pairwise as

{ , ; , ; } { [ ( ) ; [ ( ) ; },exp expz z z z T T1 11 2 3 4 1 1 1 1 2! !g gb h b m h= - -

where 2h  is known as the damping parameter in analog loop design, and b  is the decay-
rate parameter. When 02 2h , there are two real roots and the loop is overdamped; when 

02h = , there are two equal roots and the loop is critically damped; when 02 1h , the roots 
form a complex conjugate pair, leading to underdamped and hence oscillatory behavior. 
The loop is called “supercritically damped” when 0i

2h =  and i11 6m = ; with 1i
2h =-  and 

i11 6m = , the loop is called “standard underdamped.” These concepts are illustrated with 
the following example.

Example 3. Consider a supercritically damped loop with zero delay, so that ,n 0c =   
,0 1i ih m= =  and let .z z 0 91 2= = , implying that .T 0 105361b =  via Equation (11). Substi-

tuting into the expression for the loop gains yields . , .K K0 19 0 011 2= = . From the expres-
sion for normalized loop bandwidth in terms of the gain coefficients, we have 

. .B T
K K K

K K K K

2 4 2

2 2
0 068596L

1 1 2

1
2

2 1 2=
- -

+
=

+

_ i

The power-series approximation for this value of B TL  is . , .K K0 1906 0 0099721 2= = , not 
very different from the accurate DU values since this B TL  is close to the region of agree-
ment for these two models.

(11)
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Figure 3. Phase (a) and phase-error (b) time-histories of the residual carrier tracking loop, with zero Doppler  

and initial phase offset of p radians; (c) and (d): transient response in the  

beginning of the track for the first 250 samples.

An example of the temporal response of a standard underdamped residual carrier phase-
locked loop is shown in Figure 3, for a second-order loop with initial phase offset of  

r  radians, indicated by the red line. Figures 3(a) and 3(b) show the loop’s response, or  
NCO phase estimate, to the r radian phase offset and phase error over approximately 
430,000 loop updates. The phase error is the difference between the loop’s phase estimate 
and the true phase, hence it is a zero-mean process after the transient response has died 
down. Figures 3(c) and 3(d) illustrate the transient response in the beginning of the track 
for the first 250 samples. Statistics were obtained over the long observation interval after the 
transient response has died down, in order to characterize the loop’s performance. 

The variance of the phase error for a residual carrier tracking loop is shown in Figure 4 as 
a function of /P Nt 0. For this example, all of the power is in the carrier, hence there is no 
modulation, characterized by m = 0. The loop bandwidth is set to 100 Hz, which is typi-
cal for tracking loops on a spacecraft, and the update interval is T = 0.0005 s, yielding 

.B T 0 05L = . We can see in Figure 2 that for such small values of normalized loop band-
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width, the CU and DU models yield nearly identical results for both K1 and K2, hence 
we do not expect to see much difference in loop performance, measured in terms of the 
variance of phase error, ( )var i i-t . Note that even if the modulation index is greater than 
zero, meaning that part of the total power has been allocated to a modulated subcarrier, it 
is assumed that none of the modulation enters the tracking loop as interference because the 
subcarrier frequency is much greater than the loop bandwidth. Hence, the only impact on 
loop performance is the loss of residual carrier power when the modulation index is greater 
than zero.

A. The Cramér-Rao Lower Bound    

The Cramér-Rao lower bound (CRLB) on estimator performance provides a convenient 
way to evaluate the tracking loop’s performance, since it is a bound on the smallest aver-
age phase error that any phase estimator can achieve. For in-phase and quadrature sinu-

Figure 4. Residual carrier tracking loop performance as a function of Pt  /N0 (in dB), m = 0, BLT = 0.05; top inset: loop 

phase response near threshold, showing three cycle slips of 2p radians each in the middle of the track for the loop 

using the approximate CU parameters (blue circles); bottom left inset: modulo 2p phase error, where the three large  

discontinuities have been replaced with narrow spikes, yielding weak indication of cycle slips. The dashed ma-

genta line is the Cramér-Rao lower bound (CRLB) on residual carrier tracking loop performance, and the magenta 

asterisks represent simulation results with DU parameters.
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soidal signals with amplitude ( )cosA m  and unknown phase i  observed in the presence of 
zero-mean additive Gaussian noise with variance 2v , the CRLB is given by the following 
expression: 

var
cosNA m
2 2

2

$i i
v

-t_ _
i

i

where N is the number of independent samples observed.
  
For a unit-amplitude signal such that A = 1 (as required for the phase-estimator in the  
phase-locked loops considered in this article), and expressing the variance of the noise in 
terms of the ratio of total signal power to noise spectral density /P Nt 0 as 

,T N

P
2 s

t2

0
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v =
-

e o

the CRLB becomes 
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A phase-locked loop with closed-loop bandwidth BL can be viewed as a short-term integra-
tor with effective integration time /T B1 2L L= , hence the effective number of Ts second 
samples (T T<<s L) in a TL second time interval is / /N T T B T1 2L s L s= = . Approximating N as 
the number of Ts second samples per loop integration time TL, / ( )N T T B T2L s L s

1,= - , we 
can express the CRLB as 

/
/
./var cos cos

cos
NT m B T T m P N
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This form of the CRLB is most useful in evaluating simulated loop performance. 

For loops that effectively employ a squaring operation to reconstruct the carrier from the 
modulated subcarrier (or from direct modulation), such as Costas loops or conventional 
DTTLs where the noisy transition estimate is multiplied by a noisy symbol delay estimate, 
the CRLB depends on ( / )T P Ns t 0

2, and is given by ( ) /( ( )( / ) )var sinB T m T P N2L s s t
2

0
2$i i-t . 

Therefore, we need to consider both a “high-SNR” and a “low-SNR” CRLB, when dealing 
with loops or parameter estimators that employ a squaring operation.

It is well known that for high SNRs, phase-locked loops are nearly optimal, closely ap-
proaching the CRLB in terms of phase-error variance. This behavior is illustrated in Figure 4, 
where it can be seen that for /P N 27>t 0  dB-Hz, the measured variance of the simulated 
phase error indeed follows the CRLB closely, for both the CU and DU models. However, 
for /P N 27<t 0  dB-Hz, there is a catastrophic increase in phase-error variance, due to cycle 
slips that contribute factors of 2r radians to the phase error each time they occur. Note that 
this threshold behavior starts at approximately 27 dB-Hz, where the variance of the phase 
error reaches ~ 0.3 rad2, or a standard deviation of about 0.55 radians. With high-rms phase 
errors, occasional spikes of several radians can occur due to noise, leading to cycle slips that 
may eventually unlock the loop. In the insets in Figure 4, the three cycle-slip events are 
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Figure 5. Residual carrier tracking loop performance in terms of phase-error variance, with two different (and 

extreme) values of modulation index, m = 0 and m = 1.5, as a function of Pt  /N0 (in dB).

labeled 1, 2, and 3, in order of occurrence. Measuring the number of cycle slips in a given 
time interval therefore provides a sharp indication of large errors, quickly warning the op-
erator when the loop is not operating in its linear region, or has “lost lock.” 

Another method of determining the “in-lock” condition is by measuring the phase error 
modulo 2r, as shown in the inset on the lower left of Figure 4. However, with this ap-
proach, the phase error shows up only as a narrow spike of magnitude 2r radians for each 
discontinuity in phase, hence does not contribute much to the measured variance of the 
phase error. A very large number of cycle slips must occur before the measured variance 
changes significantly, hence this approach is not as decisive as the direct phase-error vari-
ance method. The modulo 2r phase error estimates are shown as green circles in Figure 4.
          
The impact of partitioning power between the residual carrier and the data modulation by 
changing the modulation index is illustrated in Figure 5, where two cases are shown: m = 0 
and m = 1.5 radians. With , ( )cosm 0 0 1

2= = , and all of the power is allocated to the car-
rier. Therefore, the loop benefits from the high power in the carrier, and achieves perfor-
mance shown in Figures 4 and 5 (curves labeled m = 0).  
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Figure 6. Comparison of residual carrier tracking loop performance using CU and DU gain parameter models,  

at a high value of normalized loop bandwidth: BLT ≤ 0.5.
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When m = 1.5 radians, ( . )cos 1 5 5 102 3#= - , most of the power is allocated to the modula-
tion and the power in the carrier has been reduced by 23 dB. Therefore, the entire perfor-
mance curve is shifted to the right by 23 dB, leading to greatly reduced performance at any 
given value of /P Nt 0. The threshold again occurs at the point where the rms phase error 
begins to exceed 0.5 radians, but now this point is 23 dB higher, hence the loop will lose 
lock at a much higher value of /P Nt 0, rendering the entire link inoperable when it occurs. 
Therefore, care must be exercised in partitioning the power between the residual carrier and 
the modulation to ensure best end-to-end performance: with more power allocated to the 
modulation, detection performance improves provided the carrier-tracking loop remains in 
lock and tracks with acceptably small radio loss. But if the tracking loop begins to experi-
ence cycle slips or loses lock, then coherent data detection becomes impossible, and the 
link cannot be maintained.
 
The importance of using the correct gain parameters provided by the DU model for higher 
values of B TL  is shown in Figure 6, selected for the purposes of illustration where the great-
est divergence between the CU and DU models occurs in Figure 2, namely B TL  = 0.5. With 
BL = 100 Hz, it follows that the loop update rate is T = 0.005 s, hence the loop is operating 
at 2-kHz update rate, which is reasonable for tracking loops on spacecraft. 
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As before, the CRLB is the dashed magenta line, representing the best theoretically attain-
able performance for any phase estimation strategy; the magenta asterisks are the measured 
phase-error variance obtained from the simulation when the DU gain parameters are used; 
and likewise the blue circles are the measured phase-error variance with the CU gain param-
eters. It is clear that loop performance is approximately 10 dB worse in terms of both phase-
error variance and /P Nt 0 over the entire operating range where the loop is in lock. This 
conclusion is also supported by the inset, which is a time-history of the phase error for both 
the CU model (blue) and DU model (red) generated by the simulation: from visual inspec-
tion, the rms value of phase error produced by the CU parameters is approximately three 
times as great as with the DU parameters, confirming the 10 dB difference. These simula-
tion results confirm the importance of using the more complex DU parameters instead of 
the readily available CU parameters for which straightforward closed-form expressions ex-
ist, but which lead to greatly degraded loop performance for large values of B TL .
 
The simulation results presented in Figures 4–6 also confirm the analytic predictions of 
Figure 2, where it can be seen that for .B T 0 05L # , both CU and DU models yield similar 
estimates for the gain parameters, however the models diverge rapidly for larger normalized 
loop bandwidths. This highlights the importance of calculating the gain coefficients via the 
more complicated DU model, using algorithms similar to the MATLAB code described in 
this article, in system designs where large loop bandwidths and relatively slow update rates 
are required.

An example of loop behavior in the presence of squaring loss is shown in Figure 7, where 
the performance of the Costas loop used on the ground to recover the carrier with sup-
pressed-carrier modulation ( /m 2r= ) is evaluated. It is assumed in this example that the 
symbol boundaries are known, so that samples can be summed over a symbol duration to 
reduce the noise variance, before multiplying the I and Q components to generate an error 
signal. The CRLB for the high-SNR region is the same as for conventional phase-locked 
loops, that is, inversely proportional to /P Nt 0. However, in the low-SNR region (nominally 
below 60 dB-Hz), the CRLB is proportional to ( / )P Nt 0

2- , yielding greater phase errors with 
decreasing SNR. The simulation points follow the envelope, or more precisely the greater of 
the low-SNR and high-SNR CRLB curves, until the variance of the phase error reaches ap-
proximately 0.3 rad2 or, equivalently, standard deviation of 0.55 radians.    

At this point, cycle slipping or loss of lock is likely to occur, as discussed earlier. With the 
steeper slope of the low-SNR CRLB, this critical point is reached at approximately 44 dB‑Hz 
for the Costas loop under the stated conditions, causing catastrophic degradation in 
performance. 
 

B. Range Resolution via Phase-Locked Loops

The phase-tracking ability of residual-carrier tracking loops can be applied to the problem 
of estimating range, when the received signal is an ambiguity-resolving compound PN 
code, the main component of which is a square wave, as is often the case [3]. An example 
of a unit-amplitude PN code received in the presence of noise and satisfying this condition 
is shown in Figure 8: this is a portion of the PN code used in the simulation. It can be seen 
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Figure 7. Simulated Costas loop performance as a function of Pt  /N0, showing the limiting cases of low-SNR  

and high-SNR CRLB, as well as the loss-of-lock threshold at 44 dB-Hz (106 chips/s, 10 samples/chip).   
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that the received signal is dominated by a periodic square wave, with occasional sign flips 
over a chip, constructed in such a way that the phase continuity of the waveform after the 
sign flip is maintained. 

This phase-locked loop concept for establishing chip-synchronization with ambi-
guity-resolving PN sequences has been simulated on the uplink portion of the link, 
where it is used to estimate the delay due to transit, thus equivalently estimating up-
link range. After demodulation, and assuming that the carrier loop aboard the space-
craft is tracking with small phase error, the quadrature component is of the form 

[ ] ( ) ( ) ( ) ( )sin cos SqQ A m t d t n tsc Qi ~D= + , where m is the modulation index and ( )d t  
describes the PN code modulation: for the simulation, we can approximate the received  
PN code as a square wave, but account for the loss in the error signal introduced by the  
sign flips caused by higher-order PN code components.
 
Since the generation of the error signal relies on a full cycle of the received waveform, mul-
tiplied by a sinusoid of the same frequency and essentially in phase with the received sig-
nal, a sign reversal over a chip cancels out the error signal over an entire cycle, introducing 
an effective loss. The fraction of gaps in typical PN codes used for ranging is about 10 per-
cent, hence we assign a loss factor of 0.9 to the received signal power in the simulation.

For this simulation, we assume that the modulation index takes on its maximal value  
of /2r , implying that all of the power is in the modulation, even though in practice the 
power is typically divided optimally between the residual carrier and the modulation for 
best performance (alternately, a Costas loop could be used with a suppressed carrier to track 
the phase). With these approximations, and further assuming that the demodulated PN 
code (here approximated as a square wave) is first filtered to the fundamental component, 
resulting in a sinusoid of amplitude /4 r but with power a fraction ( / ) .4 0 812

1 2
r =  of the 

total received modulation power, and input directly to the second-order carrier tracking 
loop operating at the frequency of the approximating 1 µs chip square wave, or 0.5 MHz, 
updated at a rate high enough to ensure the validity of the CU model. An additional loss 
factor of 0.81 is assumed to account for mismatch between the approximate square wave 
input and the sinusoidal NCO waveform. Since the amplitude of the received signal must 
be unity in order to extract the correct phase, the standard deviation of the noise added to 
the signal was increased in proportion to the loss factor in the simulation.
 
In order to estimate range, it is necessary to translate the phase of the 0.5-MHz sinusoid 
(representing the square-wave component of the composite PN code with 1-µs chips) into 
units of range, namely meters. This can be accomplished by first expressing the phase-error 
results in terms of cycles instead of radians, then expressing the fractional cycle error in 
meters. Since a chip duration of 1 µs corresponds to 300 m of range, it follows that one 
radian error represents 300/r = 95.5 m of range (since a chip is half a cycle). The results 
of the simulation in terms of range resolution (meters) are shown in Figure 9, in terms of 
/P Nt 0 of the received signal, with a modulation index of /2r .

The CRLBs for both the lossy and lossless signal-power models are shown in Figure 9, trans-
lated to range in meters instead of carrier phase in radians. The CRLB for the lossless case, 
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translated to meters of range, is shown by the red dashed line: the blue dashed line is the 
CRLB with losses included. The simulation follows the lossy CRLB accurately above thresh-
old, verifying the validity of the model. Note that with total losses of 0.81 × 0.9 = 0.729, 
corresponding to –1.4 dB, the rms error in range does not degrade significantly, hence the 
system is not sensitive to small losses. 

Symbol synchronization on the data-modulated downlink portion of the link is achieved 
with a DTTL. The basic idea is to process samples over two consecutive chips as shown in 
Figure 10. In the results presented here, each chip interval is sampled 10 times, although 
the sampling rate is a user adjustable parameter in the simulation.  

In Figure 10, we assume that the chip boundaries are synchronized with the receiver clock, 
samples from each interval are summed, forming the “in phase” random variables I k2 1-  
and I k2 , and the sign of the random variables determined, assigning the value +1 if the sign 
of the in-phase sum is positive, and –1 otherwise. This operation constitutes a hard deci-
sion on the chips, viewed as binary symbols. Simultaneously, a “quadrature” sum Qk is also 
obtained over the second half of the first interval and the first half of the second interval, 
again determined from the receiver clock. This sum can be used as an error signal for chip 
delay, since any offset between the receiver clock and the PN sequence generates an error 
signal when there is a symbol transition over the quadrature interval.
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Figure 10. DTTL signal processing timing diagram, illustrating the in-phase and quadrature  

interval concepts (Tc refers to chip or symbol interval). 
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However, it is necessary to determine if a transition has occurred, as well as the direction of 
the transition, in order to correct the sign of the error signal when there is a transition, or 
exclude the quadrature data from the loop when there is no transition, since in that case 
only noise would be added to the loop, degrading its performance. This is accomplished 
by subtracting consecutive in-phase random variables, forming the decision variable 

( )D I Ik k k2
1
2 1 2= -- : if D 1k =+ , then a transition from plus to minus was detected; if D 1k =- , 

then the transition was from minus to plus; if D 0k = , there was no transition. The quadra-
ture variable is multiplied by the decision variable, and the resulting delay error estimate 
input to the loop: D Qk k kd = . Note that if the decision variable is zero, then there is no 
input to the loop. We observe that while this processing is sensible and works well at high 
SNR, it is not motivated by the maximum likelihood approach, where each pair of consecu-
tive chips would be considered a distinct symbol that takes on one of four realizations, and 
would be estimated optimally by forming the weighted sum of samples over the two inter-
vals and selecting the largest numerical value.
 
It is clear that the transition decision Dk is subject to error due to noise, especially at low 
SNR, and that the quadrature error signal Qk  is also a noisy estimate. Therefore, the prod-
uct of these two noisy random variables constitutes a squaring operation, hence we expect 
to see squaring loss in the error variance of the DTTL, similar to that of the Costas loop 
described earlier.

The performance of the simulated DTTL is shown in Figure 11, as a function of /P Nt 0, along 
with approximate expressions for high- and low-SNR performance. The simulation used a 
half-chip window for the quadrature interval, to reduce the noise within the loop band-
width: this suggested replacing /P Nt 0 with /P N2 t 0 in the CRLB expressions, leading to good 
agreement with the simulation. The output of the DTTL is an estimate of chip delay, hence 
the delay estimates are bounded by ±1. The delay estimates have been renormalized in Fig-
ure 11 to represent range, instead of fractional chip delay, by converting 1 µs chip duration 
to 300 m of range. Squaring loss is evident below 60 dB-Hz, as in the Costas loop, due to 
the inherent squaring operation performed in the DTTL. 

Finally, the loss-of-lock threshold of the simulated DTTL was estimated by computing the 
probability of correct transition detection, assuming zero average delay in the received  
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Figure 11. Performance of the simulated DTTL as a function of Pt  /N0, demonstrating agreement with the squaring 

loss analysis, and showing good agreement with the predicted threshold behavior.
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symbols. The individual decisions were summed over an inverse loop bandwidth and mul-
tiplied by the gain factor K1 (K2 is so small in this case that it can be safely ignored). Since 
the loop bandwidth is narrow compared to the modulation, the probability of correct tran-
sition detection based on this weighted sum was determined, and scaled according to the 
maximum delay error observed in the simulation. As can be seen in Figure 11, this approxi-
mate analysis is consistent with the breakdown threshold of 47 dB-Hz in the simulation.

V. Summary 

Telemetry ranging is a novel idea currently being explored at JPL. There are several poten-
tial advantages of telemetry ranging, including the ability to conduct simultaneous ranging 
and high-rate telemetry throughout the duration of a pass, without sacrificing power or 
bandwidth to a separate ranging channel. In addition, it has been shown in [2] that for low 
data rates the ranging resolution is as good as that of conventional ranging, but for data 
rates more than about 1 Mbps, it can be orders of magnitude better. 

In order to achieve the range resolution required by deep-space links, extremely accurate 
range and range-rate determination is essential, which can be accomplished by the use 
of properly designed digital tracking loops. For the relatively high operating bandwidths 
employed by digital tracking loops on spacecraft to combat dynamics and pull-in require-
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ments, it is important to use the correct digital gain coefficients to ensure that the design 
bandwidth is closely approximated in practice. The underlying theory needed to compute 
the correct digital gain coefficients as a function of design loop bandwidth has been re-
viewed, clarifying examples have been provided, and a MATLAB code designed to iteratively 
converge on the correct gain coefficients for any desired closed-loop bandwidth has been 
described. Since the gain coefficients and closed-loop bandwidth are essentially indepen-
dent of the method of determining the error signal, a straightforward residual-carrier loop 
structure was simulated and analyzed to provide a clear description of the techniques, and 
performance compared to the Cramér–Rao lower bound. It was shown that range estima-
tion errors of 1 m or less could be achieved with SNRs /P Nt 0 of 60 dB-Hz or greater, and 
that up to 10 dB improvement in phase-error performance could be achieved through the 
use of the correct digital gain coefficients when the normalized loop bandwidth is large, 
over a wide range of SNRs characteristic of deep-space telemetry and ranging applications. 
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